Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

“ज्ञान से एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda
“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

METHODS OF TEST FOR STABILIZED SOILS

PART III TEST FOR DETERMINATION OF MOISTURE CONTENT DRY DENSITY RELATION FOR STABILIZED SOIL MIXTURES

(Incorporating Amendment No 1)

UDC 624.131 4312/3

© BIS 2004

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Price Group 3
IS·4332 (Part III) - 1967

Indian Standard

METHODS OF TEST FOR STABILIZED SOILS

PART III TEST FOR DETERMINATION OF MOISTURE
CONTENT-DRY DENSITY RELATION FOR
STABILIZED SOIL MIXTURES

Soil Engineering Sectional Committee BDC 23

Chairman
Prof S R Mehra

Representing
Central Road Research Institute (CSIR) New Delhi

Members
Shri B B L Bhatnagar
Shri K C Chandiock
Shri V P Veed Prakash (Alternate)
Shri K N Dadina
Shri A G Dastidar
Shri R L Dewan
Prof Dinesh Mohan
Shri D R Narahari (Alternate)
Director (Central Soil Mechanics Research Station)
Shri R N Dogra
Executive Engineer (Soil Mechanics and Research Division)
Shri B N Gupta
Shri S N Gupta
Dr Jagdish Narain
Joint Director Research (Civil) RDSO
Deputy Director Research (Soil Mechanics) RDSO (Alternate)
Shri S S Joshi
Shri S Varadaraja (Alternate)

Central Water & Power Commission New Delhi
Indian Institute of Technology New Delhi
Public Works Department Madras
Irrigation Research Institute Roorkee
Central Board of Irrigation & Power New Delhi
University of Roorkee Roorkee
Railway Board (Ministry of Railways)

(Continued on page 2)

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002
Representing

Public Works Department Government of Punjab
Concrete Association of India Bombay

M N Dastur & Co (Private) Ltd Calcutta
Indian National Society of Soil Mechanics & Foundation Engineering New Delhi
Public Works (Special Roads) Directorate Government of West Bengal

Engineering Research Department Hyderabad
B & R Research Laboratory Chandigarh
Institution of Engineers (India) Calcutta
National Buildings Organization New Delhi
Roads Wing (Ministry of Transport & Shipping)

Central Road Research Institute (CSIR) New Delhi
Public Works Department Government of Uttar Pradesh

Director General ISI (Ex officio Member)

Secretary

Deputy Director (Civil Engg) ISI

Convener

Central Road Research Institute (CSIR) New Delhi

Members

University of Jodhpur
Bihar Institute of Hydraulic and Allied Research Khagaul Patna
Central Water & Power Commission New Delhi
Geologists Syndicate Private Limited Calcutta
B & R Research Laboratory Public Works Department Government of Punjab

Central Building Research Institute (CSIR) Roorkee
Public Works Department Government of Uttar Pradesh
Associated Instrument Manufacturers (India) Private Limited New Delhi

SHRI H C VERMA
FOREWORD

0 1 This Indian Standard (Part III) was adopted by the Indian Standards Institution on 20 October 1967 after the draft finalized by the Soil Engineering Sectional Committee had been approved by the Civil Engineering Division Council.

0 2 Soil stabilization in the broadest sense is the alteration of any inherent property of a soil to improve its engineering performance. The classification of the methods of stabilization is based on the treatment given to the soil (for example, dewatering, compaction, etc.), the process involved (for example, thermal, electrical, etc.), and additives employed (for example, asphalt, cement, etc.). The choice of a particular method depends on the characteristics of the problem on hand. For studying the effectiveness of a stabilization technique under investigation, certain standard methods of test are required and these are being published in parts. This part (IS 4332 (Part III)) lays down the method of test for determination of moisture content-dry density relation for stabilized soil mixtures.

0 3 In the formulation of this standard, due weightage has been given to international coordination among the standards and practices prevailing in different countries in addition to relating it to the practices in this field in this country.

0 4 This edition 1.1 incorporates Amendment No. 1 (August 1983). Side bar indicates modification of the text as the result of incorporation of the amendment.

0 5 In reporting the result of a test or analysis made in accordance with this standard if the final value observed or calculated is to be rounded off, it shall be done in accordance with IS 2 1960*.

1 SCOPE

1 1 This standard (Part III) lays down the method for the determination of the relation between the moisture content and the dry density of a stabilized soil mixture. In this test, a 2.6 kg rammer falling through a height of 310 mm (light compaction) or a 4.89 kg rammer falling through a height of 450 mm (heavy compaction) is used.

*Rules for rounding off numerical values (revised)
IS 4332 (Part III) 1967

2 TERMINOLOGY

2.1 For the purpose of this standard the definitions given in IS 2809 1972* shall apply.

3 APPARATUS

3.1 Cylindrical Metal Mould — shall conform to IS 10074 1982†
3.2 Metal Rammer — shall conform to IS 9198 1979‡
3.3 Balance — one of capacity 10 kg sensitive to 1 g and another of capacity 200 g sensitive to 0.01 g
3.4 Palette Knife — A convenient size is one having a blade approximately 10 cm long and 2 cm wide

*Figure 1 2 and 3 deleted

3.5 Steel Straight Edge — about 30 cm in length and having one bevelled edge
3.6 Sieves — 50 mm 20 mm and 4.75 mm IS Sieves conforming to the requirements of IS 460 (Part 1) 1978§
3.7 Large Metal Tray — A convenient size is one about 60 cm x 45 cm and with sides 7 cm deep
3.8 Mixing Tools — Miscellaneous tools such as mixing pan, spoon, trowel, spatula, etc. or a suitable mechanical device
3.9 Apparatus for the determination of moisture content shall be in accordance with IS 4332 (Part II) 1967¶
3.10 Sample Extruder (Optional) — It consists of a jack lever frame or other device adopted for the purpose of extruding compacted specimens from the mould

4 MARKING

4.1 The cylindrical metal moulds and the metal rammers shall have firmly attached to them a marking plate bearing the following information
 a) Manufacturer’s name or trade mark
 b) Year of manufacture and
 c) Essential dimensions

*Glossary of terms and symbols relating to soil engineering (first revision)
†Specification for compaction mould assembly for light and heavy compaction test for soils
‡Specification for compaction rammer for soil testing
§Specification for test sieves Part I Wire cloth test sieves (second revision)
¶Methods of test for stabilized soils Part II Determination of moisture content of stabilized soil mixtures
4.1.1 The cylindrical metal moulds and the metal rammers may also be marked with the ISI Certification Mark

NOTE — The use of the ISI Certification Mark is governed by the provisions of the Indian Standards Institution (Certification Marks) Act and the Rules and Regulations made thereunder. Presence of this mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well defined system of inspection, testing and quality control during production. This system, which is devised and supervised by ISI and operated by the producer, has the further safeguard that the products as actually marketed are continuously checked by ISI for conformity to the standard. Details of conditions under which a licence for the use of the ISI Certification Mark may be granted to manufacturers or processors may be obtained from the Indian Standards Institution.

5 PREPARATION OF SOIL SAMPLE

5.1 Preparation of Sample Passing 20 mm IS Sieve — A representative sample weighing about 20 kg or more of the thoroughly mixed material obtained in accordance with IS 4332 (Part I) 1967*

5.1.1 The soil sample shall be made to pass through 20 mm and 475 mm IS Sieves separating the fractions retained and passing these sieves. Care shall be exercised so as not to break the aggregates while pulverising. The percentage of each fraction shall be determined. The fraction retained on 20 mm IS Sieve shall not be used in the test. The percentage of soil coarser than 475 mm IS Sieve and the percentage of soil coarser than 20 mm IS Sieve shall be determined.

5.1.2 The ratio of fraction passing 20 mm IS Sieve and retained on 475 mm IS Sieve to the soil passing 475 mm IS Sieve shall be determined. The material retained on and passing 475 mm IS Sieve shall be mixed thoroughly in the determined proportion to obtain about 16 kg of soil sample.

NOTE — In case of material passing 20 mm IS Sieve and retained on 475 mm IS Sieve is more than 20 percent, the ratio of such material to the material passing 475 mm IS Sieve shall be maintained for each determination in a test. If the coarse material retained on 475 mm IS Sieve is less than 20 percent the sample may be used as such.

5.2 Preparation of Sample Passing 475 mm IS Sieve — A representative sample weighing approximately 16 kg of the thoroughly mixed material obtained in accordance with IS 4332 (Part I) 1967* shall be taken.

*Methods of test for stabilized soils Part I Method of sampling and preparation of stabilized soils for testing
5 3 Mixing of Water and Stabilizer — Out of the soil sample obtained as described in 5 1 and 5 2 eight 2 kg samples of stabilized soil shall be prepared in the manner described in IS 4332 (Part I) 1967*

6 PROCEDURE

6 1 The empty mould shall be cleaned dried greased lightly on the inside if necessary and weighed to the nearest one gram. The mould with the collar shall be fitted on to the base plate and placed on a solid base.

6 2 Water shall be mixed with each of the samples (one sample for each moisture content) obtained as described in 5 before compaction so as to give moisture content as follows:

 a) **Sandy and Gravelly Soils** — 7 percent and above in steps of about 1½ percent

 b) **Clayey Soils** — 10 percent and above in steps of about 3 percent

6 3 Each of the samples of stabilized soil water mixture shall be compacted in the desired mould with the desired compactive efforts using the appropriate rammer as follows:

<table>
<thead>
<tr>
<th>Type of Compaction</th>
<th>Size of Mould</th>
<th>Number of Layers</th>
<th>Number of Blows per Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>1 000 ml</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2 250 ml</td>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>Heavy</td>
<td>1 000 ml</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2 250 ml</td>
<td>5</td>
<td>56</td>
</tr>
</tbody>
</table>

6 3 1 The compaction on each sample shall be completed within 20 minutes of completion of mixing. The blows shall be uniformly distributed over the surface of each layer. Care shall be taken to keep the sleeve free from the stabilized soil mixture to ensure a free fall of the rammer and any lump of soil sticking to the rammer at any stage shall be removed. Each layer of the compacted stabilized soil mixture shall be scored with a spatula before putting the stabilized soil mixture for the succeeding layer. The amount of the stabilized soil mixture used shall be just sufficient to fill the mould leaving about 5 mm to be struck off (see Note) when the collar is removed. The collar shall then be removed and the compacted stabilized soil mixture shall be carefully levelled off to the top of the mould by means of the straight edge. The mould with the compacted stabilized soil mixture shall then be weighed to the nearest one gram.

*Methods of test for stabilized soils Part I Method of sampling and preparation of stabilized soils for testing
NOTE — It is necessary to control the total volume of stabilized soil mixture compacted since it has been found that if the amount of soil struck off after removing the extension is too great the test results will be inaccurate.

6.4 The compacted specimen shall be ejected out of the mould cut in the middle and a representative soil specimen shall be taken in an air tight container from the cut surface. The moisture content of this representative specimen shall be determined in accordance with IS 4332 (Part II) 1967.

7 CALCULATION

7.1 Soils Stabilized with a Solid Stabilizer

7.1.1 Wet Density — The wet density of the compacted stabilized soil mixture shall be calculated as follows

\[Y_m = \frac{W - W_m}{1000} \text{ g/cm}^3 \]

where

- \(Y_m \) = wet density of compacted stabilized soil in g/cm\(^3\)
- \(W \) = weight of mould with moist compacted stabilized soil in g and
- \(W_m \) = weight of empty mould in g

7.1.2 Dry Density — Dry density of the compacted stabilized soil mixture shall be calculated as follows

\[Y_d = \frac{m}{(1 + \frac{w}{100})} \text{ g/cm}^3 \]

where

- \(Y_d \) = dry density of compacted stabilized soil in g/cm\(^3\)
- \(Y_m \) = wet density of compacted stabilized soil in g/cm\(^3\) and
- \(w \) = moisture content of the soil plus solid stabilizer (percent)

7.1.3 Air Voids Lines — For determining the air voids lines the following formula may be used

\[Y_d = \frac{Y \left(1 + \frac{V_a}{100}\right)}{\frac{1}{G} + \frac{w}{100}} \]

Methods of test for stabilized soils Part II Determination of moisture content of stabilized soil mixtures
where
\[Y_d = \text{dry density of soil plus solid stabilizer in g/cm}^3 \]
\[Y_w = \text{density of water in g/cm}^3 (= 1 \text{ g/cm}^3) \]
\[V_a = \text{volume of air voids in the compacted stabilized soil mixture expressed as a percentage of the total volume of the mixture} \]
\[w = \text{moisture content of the soil plus solid stabilizer percent} \]
\[G = \text{combined specific gravity of the soil plus stabilizer (see 7 1 3 1)} \]

7 1 3 1 The combined specific gravity of the soil plus stabilizer \((G) \)
may be calculated from the following formula
\[
G = \frac{1 + \frac{x}{100}}{1 + \frac{x}{100} \frac{G_s}{G_c}}
\]
where
\[x = \text{stabilizer content expressed as a percentage of the weight of dry soil} \]
\[G_s = \text{specific gravity of the soil particles determined in accordance with the method given in IS 2720 (Part 3/Sec 2) 1980* and} \]
\[G_c = \text{specific gravity of the solid stabilizer} \]

7 2 Soil Stabilized with a Fluid Stabilizer

7 2 1 Wet Density — The wet density of the compacted stabilized soil mixture shall be calculated as in 7 1 1

7 2 2 Dry Density — The dry density of the compacted stabilized soil mixture shall be calculated as follows
\[
Y_d = \frac{Y_m}{1 + \left(\frac{W + S}{100} \right)}
\]
where
\[Y_d = \text{dry density of compacted stabilized soil in g/cm}^3 \]
\[Y_m = \text{wet density of compacted stabilized soil in g/cm}^3 \]
\[W = \text{moisture content of the soil (percent)} \]
\[S = \text{the nonaqueous fluid stabilizer content of the soil (percent)} \]

*Methods of test for soils Part 3 Determination of specific gravity Section 2 Fine medium and coarse grained soils (first revision)
7 2 3 Air Voids Line — For determining the air voids lines the following formula may be used

\[Y_d = \frac{Y_w \left(1 - \frac{V_a}{100}\right)}{\left(\frac{1}{G_s}\right) + \frac{w + s}{100}} \]

where

- \(Y_d \) = dry density of soil in g/cm³
- \(Y_w \) = density of water in g/cm³ (= 1 g/cm³)
- \(V_a \) = volume of air voids in the compacted stabilized soil mixture expressed as a percentage of the total volume of the mixture
- \(w \) = moisture content of the soil (percent)
- \(s \) = the nonaqueous fluid stabilizer content of the soil (percent) and
- \(G_s \) = specific gravity of the soil particles determined in accordance with IS 2720 (Part 3/Sec 2) 1980*

8 REPORT

8 1 Record of Results — The test results shall be recorded suitably.
A recommended proforma for recording the results is given in Appendix A.

8 2 Moisture (Dry Density Curve) — The dry densities of the compacted soil stabilizer mixture obtained in a series of determinations shall be plotted against the corresponding moisture contents. A smooth curve shall be drawn through the resulting points. The dry density corresponding to the maximum point of the curve and the corresponding moisture content shall also be reported.

8 3 The following shall also be reported

- a) The amount of soil retained on the 20 mm IS Sieve passing the 20 mm IS Sieve and passing 4.75 mm IS Sieve
- b) The method of obtaining the results namely light compaction or heavy compaction and
- c) The amount and type of stabilizer used

*Methods of test for soils Part 3 Determination of specific gravity Section 2 Fine medium and coarse grained soils (first revision)
APPENDIX A

Clause 81

COMPACtion TEST DATA SHEET

<table>
<thead>
<tr>
<th>Name of the project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample reference</td>
<td>Height of fall of the rammer</td>
</tr>
<tr>
<td>Type of Test</td>
<td>Light/Heavy compaction</td>
</tr>
<tr>
<td>Volume of the mould</td>
<td></td>
</tr>
<tr>
<td>Weight of the rammer</td>
<td></td>
</tr>
<tr>
<td>Weight of mould</td>
<td></td>
</tr>
<tr>
<td>Percentage of material</td>
<td></td>
</tr>
<tr>
<td>a) Retained on 20 mm IS Sieve</td>
<td></td>
</tr>
<tr>
<td>b) Passing 20 mm IS Sieve</td>
<td></td>
</tr>
<tr>
<td>c) Passing 4 75 mm IS Sieve</td>
<td></td>
</tr>
<tr>
<td>Ratio of (b) to (c)</td>
<td></td>
</tr>
<tr>
<td>Stabilizer used</td>
<td></td>
</tr>
<tr>
<td>Quantity of stabilizer used</td>
<td></td>
</tr>
<tr>
<td>Specific gravity of the soil</td>
<td></td>
</tr>
<tr>
<td>Specific gravity of the stabilizer</td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Determination No</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of mould + compacted soil stabilizer mixture in g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of mould in g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of compacted soil stabilizer mixture in g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet density in g/cm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average moisture content percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid stabilizer content percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry density in g/cm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use in the course of implementing the standard of necessary details such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically. A standard along with amendments is reaffirmed when such review indicates that no changes are needed. If the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or editions by referring to the latest issue of BIS Catalogue and Standards Monthly Additions.

This Indian Standard has been developed by Technical Committee BDC 23.

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No</th>
<th>Date of Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amd No 1</td>
<td>August 1983</td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters

Manak Bhavan 9 Bahadur Shah Zafar Marg New Delhi 110002
Telephones 323 01 31 323 33 75 323 94 02
Telegram Manaksansth (Common to all offices)

Regional Offices

Central Manak Bhavan 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Telephones 323 38 41

Eastern 1/14 C I T Scheme VII M V I P Road Kankurgachi
KOLKATA 700054
Telephones 337 86 26 337 91 20

Northern SCO 335 336 Sector 34 A CHANDIGARH 160022
Telephones 60 38 43

Southern C I T Campus IV Cross Road CHENNAI 600113
Telephones 235 02 16 235 04 42

Western Manakalaya E9 MIDC Marol Andheri (East)
MUMBAI 400093
Telephones 832 92 95 832 78 58

Branches

AHMEDABAD BANGALORE BHOPAL BHUBANESHWAR COIMBATORE
FARIDABAD GHAZIABAD GUWAHATI HYDERABAD JAIPUR KANPUR LUCKNOW
NAGPUR NALAGARH PATNA PUNE RAJKOT THIRUVANANTHAPURAM
VISHAKHAPATNAM